An Indirect Shooting Method for Stochastic Trajectory Optimization
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Fig. 1: Solution to an uncertainty-aware trajectory optimization problem computed using an indirect shooting method [1].

Abstract— We propose the first indirect shooting method
for continuous-time stochastic trajectory optimization. This
method leverages a new Pontryagin Maximum Principle
(PMP) derived using rough path theory. In contrast to
previous optimality conditions, this PMP does not rely on
forward-backward stochastic differential equations, which
is the key to unlock a practical indirect shooting method.
We show that it converges 10x faster than a direct method
on an example, thanks to exploiting the low-dimensional
structure of solutions encoded in the PMP.

I. INTRODUCTION

Accounting for uncertainty in the decision-making
stack is key to achieving reliable robotics autonomy
in complicated environments. In particular, algorithms
for trajectory optimization under uncertainty underpin a
wide range of applications [2]. Such methods typically
solve stochastic trajectory optimization problems (TOP)
of the form

T
min E{/ K(mt,ut)dt]
(z,u) 0
s.t. dxy = b(mt,ut)dt -+ O'(J)t)dBt, t e [0,71}7 (1)

(TOP)

where (1) is a stochastic differential equation (SDE) in
Stratonovich form, the states x; are uncertain due to
disturbances modeled as a Brownian motion B, and the
control inputs u; are open-loop. The dimensions of the
state and control input are denoted by n and m.

Direct and indirect methods are two approaches for
solving trajectory optimization problems. For deter-
ministic problems, indirect methods typically converge
faster to higher-accuracy solutions than direct methods,
but they are more sensitive to the choice of initial guess.
In the stochastic case, direct methods for solving TOP
exist. However, there is currently no indirect method for
solving TOP. Indeed, existing optimality conditions for
solutions to TOP that an indirect method would rely on
are formulated with forward-backward SDEs (FBSDE)
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Fig. 2: Computation times to solve an instance of TOP using
a direct and indirect method.

(see e.g. [3], [4]) that introduce greater algorithmic and
computational complexity if the dynamics are nonlinear.

II. NEW OPTIMALITY CONDITIONS

The following result provides new first-order optimal-
ity conditions for solutions to TOP. A more detailed
formulation and a proof of the result are in [1].

Theorem (Pontryagin Maximum Principle (PMP))

Let (z,u) be an optimal solution to TOP and define

the Hamiltonian H (z,u, p) := p ' b(z,u) — £(x,u).
Then, there exists a stochastic process p called

adjoint vector starting from some random initial

conditions pg such that:

i) Adjoint equation: the adjoint vector p solves
the random rough differential equation (RDE)

O0H do
dp; = —%(xt’uupt)dt - %(xt)TptdBt'

ii) Transversality condition: with probability one,
pr = 0.

iii) Maximality condition: the optimal control input
maximizes the average value of the Hamiltonian:

uy = argmax E [H (z¢,v,pt)],
veU

te[0,T].



The similarity to the deterministic PMP is striking!
The Hamiltonian H is unchanged, the adjoint equation
is interpreted pathwise and has the same drift term — %—Ij,
the transversality condition is identical, and the only
difference in the maximality condition is an average. The
reader is invited to compare PMP with [5, Theorem 2].

Importantly, the adjoint equation is not an FBSDE like
in standard PMPs, but a random RDE defined pathwise
using rough path theory [6]-[8]'. This is the key to
unlock a practical indirect method.

III. A NEW INDIRECT SHOOTING METHOD

PMP informs the design of a new indirect method for
nonlinear stochastic trajectory optimization. That is, if
we approximate all averages in TOP and PMP using
Monte Carlo estimates for a sample size M, the search
for approximate solutions to TOP consists of finding the
initial values of the adjoint vector (p§)*; € RM" such
that the transversality condition (p%)*, = 0 holds. If
the maximality condition gives a closed-form expression
of the control u} as a function of (¢, p¢)}, (which is
often the case for control-affine systems), then we can
use a root-finding Newton method to efficiently find a
solution (p)M, satisfying the transversality condition:

Algorithm (Indirect Shooting Method)

Parameters: Sample size M, tolerance e
Inputs: Initial guess for (pj)M,, samples (B?)
While || F||o < e
1) Compute the transversality condition error and
its Jacobian with respect to (p)M,
F = (pr,...,p¥)
J = Vips,....o0 @1 -

M
=il

07

by integrating the coupled differential equation
dzt = b(xi, uM)dt + o(xi)dB;,
dpiZE = _%(xivui\/l7p%)dt - g%(x;)Tp%ngv

M
o M 1 i i
with u” = argn[}ax a7 > H(zg,v,pf)

ve i=1

with initial conditions ((xg,p}), ..., (o, pi!)).
2) Update (pj)M, by taking a Newton step
(p(1)7 '--vp(])w) — (p(l)v"'vpg/[) =

Return the control trajectory v by integrating the
coupled differential equation above from (pj)M .

This approach is commonly known as an indirect
shooting method in deterministic trajectory optimization

I'The adjoint equation cannot be interpreted as an Itd or Stratonovich
SDE, because po depends on the entire path of B. Using rough path
theory to derive a stochastic PMP is new and the key to avoid FBSDE:s.

[5] and is a natural extension to the stochastic setting
using PMP and a Monte Carlo approximation [9]-[11].
To our knowledge, this method has not appeared in
the literature yet, as previous optimality conditions rely
on FBSDE:s that introduce greater complexity. Indeed,
previous indirect methods use deep learning to solve the
FBSDEs from the classical stochastic PMP [12]-[14],
whereas this indirect method does not require training a
neural network and uses a Newton method instead.

IV. RESULTS

We evaluate the method on a stabilization task for a
system with nonlinear rigid body dynamics. The cost is a
standard quadratic /(z,u) = 2" Qx+u' Ru. As a base-
line, we use the direct method in [11] that solves a Monte
Carlo reformulation of TOP via sequential quadratic
programming. Details are in [1] and code is available
at github.com/ToyotaResearchInstitute/rspmp.

Results in Figure 1 (right) show that the adjoint vector
trajectories p’ start from different initial conditions pj
and are all zero at the final time (p}. = 0) to satisfy the
transversality condition of PMP. Also, results in Figure
2 show that the indirect method is about 10X faster than
the direct method, thanks to leveraging the structure of
the problem encoded in PMP to optimize over only the
Mn variables pg for the indirect method, versus opti-
mizing over the N (Mn+m) variables (2} 5, ul A,) for
the direct method, where N is the number of timesteps
used to discretize the differential equation in TOP.

However, indirect methods typically have higher nu-
merical sensitivity to the choice of initial guess. This
tradeoff is well-known in the deterministic trajectory
optimization literature, motivating the development of
multiple shooting and homotopy methods [5], [15] for
uncertainty-aware trajectory optimization. For further
results on feedback optimization, we refer to [1].

V. CONCLUSION AND OUTLOOK

The optimality conditions in PMP provide new in-
sights onto the structure of solutions to stochastic tra-
jectory optimization problems. The main motivation for
deriving PMP is the development of new algorithms
for uncertainty-aware control and planning that can
more easily borrow ideas from the deterministic optimal
control literature, such as indirect shooting methods.

In the recent years, robotics research has shown
that training policies offline via reinforcement learning
by heavily randomizing the environment can yield ro-
bust controllers. Designing new trajectory optimization
and MPC algorithms to solve similar uncertainty-aware
problems online would potentially also yield robust
controllers, but without the need to learn a policy offline.
To do so, leveraging low-dimensional characterizations
of solutions such as PMP and recent advances in numer-
ical optimization are promising avenues for research.


github.com/ToyotaResearchInstitute/rspmp
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